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We report on the existence and stability of multicolor lattice vortex solitons constituted by coupled funda-
mental frequency and second-harmonic waves in optical lattices in quadratic nonlinear media. It is shown that
the solitons are stable almost in the entire domain of their existence, and that the instability domain decreases
with the increase of the lattice depth. We also show the generation of the solitons, and the feasibility of the
concept oflattice soliton algebra.
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Localized structures, especially solitons, play a crucial
role in many branches of nonlinear science. Over the past
several decades, the existence and unique properties of spa-
tial, temporal, and spatiotemporal optical solitons in homo-
geneous cubic and quadratic nonlinear media have been
studied both theoretically and experimentallysfor detailed
reviews, see Refs.f1–3gd. Solitons arise as a result of the
balance between linear diffracting and/or dispersing proper-
ties of the medium and a nonlinear mechanism responsible
for focusing/defocusing. One important subject of study is
the generation of nonlinear modes with a nontrivial phase,
such as vortices. In optics, vortices are associated with screw
phase dislocations nested in light beamsf4g. Here we are
interested in vortices with a bright shape, i.e., dislocations
nested in finite-size beamsf5g. In homogeneous pure cubic
and quadratic uniform media such ring-shaped vortex soli-
tons suffer azimuthal instabilities which have been observed
experimentally in different settingsf6g. They can be made
stable in media with competing nonlinearitiesf7g, and in
media with refractive index modulations that we address
here.

Propagation of optical radiation in media with transverse
refractive index modulation differs considerably from the
propagation in uniform media. Localized structures in such
periodic media, termed discrete or lattice solitons, do exist
and exhibit a rich variety of topologies. Since the theoretical
prediction of discrete optical solitons in 1988f8g they keep
attracting a growing interest, in part because of their poten-
tial for all-optical switching and routing phenomenaf9–11g.
The intermediate regime between continuous and discrete
solitons f12,13g, constituted by continuous nonlinear media
with an imprinted transverse modulation of the refractive
index, has been shown recently to offer a variety of new
opportunities. The concept behind this regime might be
termedtunable discreteness, with the strength of modulation
being the parameter that tunes the system properties from
predominantly continuous to predominantly discrete. In this
context, wave dynamics is governed by the interplay be-
tween optical tunnelling to adjacent sites and nonlinearity.
This kind of lattice solitons has been observed recently in
two-dimensional s2Dd photorefractive optical lattices
f14–18g.

Besides the study of the existence and stability properties
of fundamentalsground stated modes in the nonlinear media
with periodic potentials an intriguing question is whether the
action of the confining potential can permit the formation of
vorticity carrying localized structures. Theoretical works
showed that such complex localized structures, i.e.,lattice
vortex solitonsexist when an optical lattice acts on a Kerr or
photorefractive nonlinear crystalf19–21g. Recently, theoret-
ical expectations were indeed confirmed experimentally by
two independent groupsf22,23g. During the last years vari-
ous families of solitons in arrays of weakly coupled
waveguides made with quadratic nonlinear media have been
investigatedf24–29g and observedf30g. One-dimensional
s1Dd multicolor solitons in lattices with tunable strength
have been also studied recently, and their potential applica-
tions for packing and steering single solitons have been in-
vestigatedf31g. Two-dimensional geometries might support
even robust soliton ensembles with phase dislocations, the
problem that we address in this work.

We thus report on the existence and stability of such mul-
ticolor lattice vortex solitons, which comprise four main
humps arranged in a square configuration. It is shown that
the lattice vortex solitons are stable almost in the entire do-
main of their existence except for a narrow region near the
cutoff, and that the instability domain decreases with the
increase of the lattice depth. We also investigate the possi-
bility of their dynamical generationf32g from Gaussian-type
input beams with nested vorticities.

We study the system of coupled nonlinear equations that
describe the interaction between the fundamental frequency
sFFd and second-harmonicsSHd waves under conditions for
type-I second-harmonic generation in bulk materials in the
absence of Poynting vector walkoff:
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plitudes of the FF and SH fields,k1=ksv0d, k2=ks2v0d
<2k1, r0 is the transverse scale of the input beams,h
=x/ r0, z=y/ r0, j=z/ sk1r0

2d, b=s2k1−k2dk1r0
2 is the

phase mismatch, d1=−1, d2=−k1/k2<−1/2, and p
=2pv0

2dxs1dr0
2/c2 is the lattice depth. The functionRsh ,zd

=coss2ph /Tdcoss2pz /Td describes the transverse refractive
index profile, whereT is the modulation period. The system
s1d admits several conserved quantities, including the energy
flow

U =E E
−`

+`

suq1u2 + uq2u2ddhdz, s2d

and the Hamiltonian

H =E E
−`

+` F−
d1

2
u ¹ q1u2 −

d2

4
u ¹ q2u2 −

1

2
sq1

*d2q2 exps− ibjd

−
1

2
q1

2q2
* expsibjd +

b

2
uq2u2 − pRsh,zduq1u2

− pRsh,zduq2u2Gdhdz, s3d

where ==ehs] /]hd+ezs] /]zd, and eh, ez are unity vectors
alongh andz axes.

We searched for the stationary solutions in the formq1
=fu1sh ,zd+ iv1sh ,zdgexpsib1jd and q2=fu2sh ,zd
+ iv2sh ,zdgexpsib2jd, whereu1,2sh ,zd andv1,2sh ,zd are real
functions, andb1,2 are real propagation constants that verify
b2=b+2b1. Substitution of the above expressions into Eq.
s1d yields the following system of equations for the soliton
profilesu1,2 andv1,2
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We solved the system of coupled equationss4d numeri-
cally by using a standard relaxation method. The lattice vor-
tex soliton families are one-parameter families defined by the
propagation constantb1 for any given period of the modula-
tion T, lattice depth p, and phase mismatchb. Since
one can use scaling transformationsq1,2sh ,z ,j ,b ,pd
→x2q1,2sxh ,xz ,x2j ,x2b ,x2pd to obtain various families of
solitons from a given family, we have selected the transverse
scale r0 such that the modulation period is given byT
=p /2 and then we have variedb1, b, andp.

The simplest vortex soliton with unit topological charge
in two-dimensional periodic lattice is shown in Fig. 1. It
comprises four main humps arranged in a square configura-

tion with a stairlike phase structure that is topologically
equivalent to the phase of a conventional vortex in uniform
mediumfsee Figs. 1sbd and 1sddg. The positions of the soli-
ton intensity maxima almost coincide with the positions of
the local maxima of the lattice. Note that the singularity of
these vortex solitons is centered between four lattice sites,
that is they belong to the class of the, so called,off-site
vortex soliton. In the model we investigated here there exist
also a family ofon-sitevortex solitonssnot shown hered. In
that case the phase singularity is centered on a lattice site
f20,22,23g. We will restrict ourselves here to the case of the
off-site vortex solitons. It is interesting to note that these
stationary structures somehow resembles the four-soliton
molecules carrying orbital angular momentum that were in-
vestigated in a variety of nonlinear media in both two-
dimensional and three-dimensional geometriesf33–35g. The
typical stairlike phase distribution in the case of the above
mentioned soliton molecules is clearly seen in panelssbd and
sdd of Fig. 1 for the lattice vortex solitons. We want to men-
tion that the 1D quadratic waveguides were also shown to
support various families of multipeaked solitons, which dis-
play combinations of in-phase and out-of-phase odd solitons,
the latter ones withp phase jumps between neighbor solitons
f31g.

It should be noted that at low powersssmallb1d the lattice
vortex solitons are quite wide and spread out over many
lattice sitesfFig. 1sadg, while at high powers the energy is
mainly localized within the corresponding four peaksfFig.
1scdg. We did not find four-hump structures with higher to-
pological chargesstwo or mored, and all other higher-order
stationary structures we have foundsfor example, lattice vor-
tex solitons with eight humpsd were found to be unstable on
propagation. Thus in this work we will restrict ourselves to
the study of the properties of simplest four-hump lattice vor-
tex solitons.

FIG. 1. sad Profile andsbd phase of vortex solitons supported by
the harmonic lattice atb1=1.07.scd Profile andsdd phase of vortex
soliton atb1=2. Only the FF wave is shown. Lattice depthp=4,
phase mismatchb=0.
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In order to characterize the families of lattice vortex soli-
tons we have calculated the energy flows associated with
these stationary solutions as well as their existence domains
for given lattice depthp and phase mismatchb. As a general
rule, the energy flow of the four-hump lattice vortex solitons
is a nonmonotonic function of the propagation constant
feven if this cannot be seen directly from Fig. 2sdd without
zoomingg. Note that in Figs. 2sad and 2sdd on the abscissa we
have plotted the differencesb1−bcod between the propagation
constantb1 and cutoff valuebco. The cutoff value depends on
both the phase mismatchb and lattice depthp. For example
at p=8 cutoff is given bybco=6.065 for b=−6, while bco
=1.23 forb=6. The cutoffbco is a nonmonotonic function of
the lattice depthp fFig. 2sbdg. It tends to infinity atp→0 and
p→ +`. One can see from Fig. 2scd that in the presence of
the lattice the dependencebcosbd differs from that for qua-
dratic solitons in continuous media:bcosbd=maxh−b /2 ,0j.
Thus at b→−` cutoff is approximately given bysb
−b0d /2, while at b→ +` one hasbco=b0, whereb0 is the
mismatch shift due to the lattice. Bothb0 andb0 growth with
p. This property holds also for the one-dimensional lattice
solitons in quadratic nonlinear mediaf31g.

The periodic refractive index modulation affects also the
energy sharing between FF and SH waves. For example, at a
given phase mismatchb, the fraction of the total energy flow
carried by the SH wave increases with increase of the lattice
depth. Moreover, near the cutoff, the SH wave spreads over
more lattice sites than the FF beam. As in the case of a
uniform media, in the lattice with fixed depthp the part of
energy flow carried by the SH wave decreases with increase
of phase mismatchb.

To investigate the stability of the lattice vortex solitons,
we have performed extensive numerical simulations of
the evolution dictated by Eq.s1d with the input
conditions q1sj=0d=fu1sh ,zd+ iv1sh ,zdgf1+r1sh ,zdg and
q2sj=0d=fu2sh ,zd+ iv2sh ,zdgf1+r2sh ,zdg, where u1,2 and
v1,2 are the exact solutions of Eq.s4d and r1,2 are random
functions with Gaussian distribution and variancesnoise

2

=0.01. We have propagated the perturbed four-hump lattice
vortex solitons over thousands of units for various values of
the physical parameters involvedsb ,p,Ud.

Our simulations show that there exists a narrow instability
band near the propagation constant cutoffbco for vortex soli-
tons, but above a certain critical value of propagation con-
stant they appear to become free of instability. We have
found that the width of instability domain of lattice vortex
solitons decreases with increase of the depth of the latticep
fFig. 2sddg. For example, as depicted in Fig. 2sdd, the width
of instability domain on propagation constant forp=12 is
approximately given by 0.24, while forp=8 it is 0.35.

A few representative decay scenarios for the unstable
four-hump lattice vortex solitons with unit topological charge
are shown in Fig. 3. In the rowsad of Fig. 3 we show the
typical decay of the unstable vortex soliton in the vicinity of
the cutoff on propagation constantbco. The initial energy of
the localized structure is spreading out during evolution
across the whole lattice and the vortex soliton disappears.

FIG. 3. Propagation of vortex solitons withb1=3.1 sad, 3.4 sbd,
and 5scd in the presence of input noise with variancesnoise

2 =0.01.
FF wave profile is shown at different propagation distances. Lattice
depthp=8, phase mismatchb=0.

FIG. 2. sad Vortex soliton energy flow versus propagation con-
stant for different values of phase mismatch atp=8. sbd Propagation
constant cutoff versus lattice depth atb=0. scd Cutoff versus phase
mismatch atp=8. sdd Stability and instability domains for different
lattice depths atb=0. Circles show critical value of propagation
constant for stabilization.
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Notice that this type of instability develops exponentially. In
the rest part of the instability domain located closer to criti-
cal value of the propagation constant, we encountered
oscillatory-type instability. Upon development of this insta-
bility vortex soliton transforms into a fundamentalsground
stated lattice soliton that is the most robust and energetically
stable state of the systemfsee rowsbd of Fig. 3g, through
increasing oscillations of four intensity maxima of the
vortex.

One of the important results of this study is that the lattice
vortex soliton becomes completely stable when its propaga-
tion constant exceeds a critical valuebcr, i.e., almost in the
entire existence domainfsee Fig. 2sddg. In row scd of Fig. 3
we have plotted, for the sake of illustration, the initial and
the final safter 500 propagation unitsd intensity distributions
of a stable lattice vortex soliton. Comparing to the soliton
molecules investigated in bulk nonlinear media, which were

shown to bemetastablephysical objects under suitable con-
ditions, we conclude that, as expected on physical grounds,
the effect of the two-dimensional lattice is to arrest the rota-
tion of the soliton molecule and thus to assure the complete
stabilization of the soliton complex. Since lattice causes
strong azimuthal modulation of the vortex soliton, lattice re-
moval results in complete soliton decay into four filaments,
as shown in Fig. 4. Escape angles of filaments decrease with
increase of input energy flow of vortex soliton.

To understand lattice vortex solitons generation from a
radially symmetric input beam carrying a screw phase dislo-
cation nested in the center and to show that different sets of
output solitons can be obtained with different combinations
of topological charges and shapes of the input beams we
performed a comprehensive set of simulations of Eq.s1d
with the input conditions corresponding to Gaussian beams
with a phase dislocation nested in the center:

q1sj = 0,r,wd = Arum1u expsim1wdexps− r2/w1
2d,

FIG. 4. Snapshot images showing decay of the stable vortex
solitons caused by removal of the lattice. Only SH wave profile is
shown. Images are taken after each 2.5 propagation units. Lattice
depthp=8, phase mismatchb=0.

FIG. 5. Generation of the vortex solitons with only FF input.sad
Field andsbd phase distributions of the input FF beam with topo-
logical chargem1=1. scd FF beam andsdd SH beam atj=15. Lat-
tice depthp=8, phase mismatchb=0.

FIG. 6. Soliton algebra. The output soliton distribution depends
on the topological chargesm1 of FF wave andm2 of SH wave,
respectively. In all cases,m1=1. In sad–sdd, the amplitude of FF
wave A=20 and the amplitude of SH waveB=2. In sed and sfd A
=20 andB=0.5. Plotssad–sfd correspond the topological charges
m2=1,3,4,6,7,8,respectively, and show the output SH field dis-
tribution atj=100. Lattice depthp=8, phase mismatchb=0.
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q2sj = 0,r,wd = Brum2u expsim2wdexps− r2/w2
2d, s5d

wherer =sh2+z2d1/2 is the radius,w is the azimuthal angle,A
and B are amplitudes of FF and SH waves,w1 and w2 are
beam widths. Below we set the widthsw1=w2=1 and sup-
pose that topological charge of FF wave is given bym1=1.

First, we consider nonseeded vortex soliton generation at
B=0. At low input powers both input FF wave and generated
SH wave exhibit complete diffraction, and input beam en-
ergy is redistributed between many lattice sites. With the
increase of input energy flowfi.e., by increasingA in Eqs.
s5dg the generation of lattice vortex soliton with unit topo-
logical charge becomes possible as shown in Fig. 5. Lattice
soliton generation is accompanied with energy radiation
fFigs. 5scd and 5sddg but the ratio between radiative losses
and the output soliton energy flow decreases with increase of
input energy flow.

In the case of seeded SH generationsBÞ0 andB!Ad, the
output field distribution can be controlled by the input topo-
logical charge of SH wave. Form1=1 vortex soliton genera-
tion is possible only for the vorticity-matched case when
m2=2, while all other values ofm2 correspond to formation
of trivial-phase soliton distributions, whose structure is dic-
tated by lattice symmetry and energy exchange between FF
and SH waves at the initial stage of propagation. Some rep-
resentative output distributions are shown in Fig. 6. These
plots show that the concept of “soliton algebra,” previously
explored in homogeneous mediaf36g, does also apply in the

presence of lattices, offering interesting opportunities for
controlling the soliton dynamics.

In summary, we have shown that periodic lattices im-
printed in quadratic nonlinear media can support four-hump
vortex solitons with unit topological charge that are stable
provided that their propagation constant is above a certain
critical value. Below this critical value we have identified
two types of instabilities:sid an exponential type of instabil-
ity leading to the final decay and spread out of the solitons
across the lattice, andsii d an oscillatory-type instability lead-
ing to the transformation of the lattice vortex soliton into a
fundamental soliton without internal vorticity. We investi-
gated the generation of the multicolor lattice vortex soliton
from Gaussian beams with nested phase dislocations. The
possibility to generate different output lattice soliton pat-
terns, with and without vorticity, by varying the topological
charges and amplitudes of the input beams in seeded excita-
tion configurations, has been discussed. The generation of a
2D periodic potential in quadratic nonlinear media is a chal-
lenging issue, even though fabrication of 1D lattices has
been already achieved using techniques which might be ex-
tended to 2D geometries. Also, the results presented here
might be relevant to suitable atomic-molecular Bose-Einstein
condensates held in optical lattices.

This work was partially supported by the Generalitat de
Catalunya, by the Institució Catalana de Recerca i Estudis
AvançatssICREAd, and by the Spanish Government through
Grant No. BFM2002-2861.

f1g Yu. S. Kivshar and G. P. Agrawal,Optical Solitons: From
Fibers to Photonic CrystalssAcademic, San Diego, 2003d.

f2g G. I. Stegeman, D. J. Hagan, and L. Torner, Opt. Quantum
Electron. 28, 1691s1996d.

f3g A. V. Buryak, P. Di Trapani, D. V. Skryabin, and S. Trillo,
Phys. Rep.370, 63 s2002d.

f4g For a review, see, e.g., M. S. Soskin and M. V. Vasnetsov, in
Progress in Optics, edited by E. WolfsElsevier, Amsterdam,
2001d, Vol. 42.

f5g V. I. Kruglov and R. A. Vlasov, Phys. Lett. A111, 401s1985d;
L. Torner and D. V. Petrov, Electron. Lett.33, 608s1997d; W.
J. Firth and D. V. Skryabin, Phys. Rev. Lett.79, 2450s1997d;
J. P. Torres, J. M. Soto-Crespo, L. Torner, and D. V. Petrov, J.
Opt. Soc. Am. B15, 625 s1998d.

f6g V. Tikhonenko, J. Christou, and B. Luther-Daves, J. Opt. Soc.
Am. B 12, 2046s1995d; D. V. Petrov, L. Torner, J. Martorell,
R. Vilaseca, J. P. Torres, and C. Cojocaru, Opt. Lett.23, 1444
s1998d; M. S. Bigelow, P. Zerom, and R. W. Boyd, Phys. Rev.
Lett. 92, 083902s2004d.

f7g M. Quiroga-Teixeiro and H. Michinel, J. Opt. Soc. Am. B14,
2004 s1997d; I. Towers, A. V. Buryak, R. A. Sammut, B. A.
Malomed, L.-C. Crasovan, and D. Mihalache, Phys. Lett. A
288, 292 s2001d; B. A. Malomed, L.-C. Crasovan, and D.
Mihalache, Physica D161, 187s2002d; D. Mihalache, D. Ma-
zilu, L.-C. Crasovan, I. Towers, A. V. Buryak, B. A. Malomed,
L. Torner, J. P. Torres, and F. Lederer, Phys. Rev. Lett.88,

073902 s2002d; D. Mihalache, D. Mazilu, I. Towers, B. A.
Malomed, and F. Lederer, Phys. Rev. E67, 056608s2003d; D.
Mihalache, D. Mazilu, B. A. Malomed, and F. Lederer,ibid.
69, 066614s2004d; J. Opt. B: Quantum Semiclassical Opt.6,
S341s2004d.

f8g D. N. Christodoulides and R. I. Joseph, Opt. Lett.13, 794
s1988d.

f9g D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature
sLondond 424, 817 s2003d.

f10g O. Bang and P. D. Miller, Opt. Lett.21, 1105s1996d.
f11g Y. V. Kartashov, L. Torner, and V. A. Vysloukh, Opt. Lett.29,

1102s2004d; Y. V. Kartashov, A. S. Zelenina, L. Torner, and V.
A. Vysloukh, ibid. 29, 766 s2004d.

f12g R. Scharf and A. R. Bishop, Phys. Rev. E47, 1375s1993d.
f13g O. Cohen, T. Schwartz, J. W. Fleischer, M. Segev, and D. N.

Christodoulides, Phys. Rev. Lett.91, 113901s2003d.
f14g N. Efremidis, S. Sears, D. N. Christodoulides, J. Fleischer, and

M. Segev, Phys. Rev. E66, 046602s2002d.
f15g J. Fleischer, T. Carmon, M. Segev, N. Efremidis, and D. N.

Christodoulides, Phys. Rev. Lett.90, 023902s2003d.
f16g J. Fleischer, M. Segev, N. Efremidis, and D. N. Christodoul-

ides, NaturesLondond 422, 147 s2003d.
f17g D. Neshev, E. Ostrovskaya, Y. Kivshar, and W. Krolikowski,

Opt. Lett. 28, 710 s2003d.
f18g Y. V. Kartashov, V. A. Vysloukh, and L. Torner, Opt. Express

12, 2831s2004d.

MULTICOLOR VORTEX SOLITONS IN TWO-… PHYSICAL REVIEW E 71, 016616s2005d

016616-5



f19g B. A. Malomed and P. G. Kevrekidis, Phys. Rev. E64, 026601
s2001d.

f20g J. Yang and Z. Musslimani, Opt. Lett.23, 2094s2003d.
f21g Z. Musslimani and J. Yang, J. Opt. Soc. Am. B21, 973s2004d.
f22g D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, and Yu. S.

Kivshar, Phys. Rev. Lett.92, 123903s2004d.
f23g J. Fleischer, J. Bartal, O. Cohen, O. Manela, M. Segev, J.

Hudock, and D. N. Christodoulides, Phys. Rev. Lett.92,
123904s2004d.

f24g A. A. Sukhorukov, Y. S. Kivshar, O. Bang, and C. M. Souk-
oulis, Phys. Rev. E63, 016615s2000d.

f25g O. Bang, P. L. Christiansen, and C. B. Clausen, Phys. Rev. E
56, 7257s1997d.

f26g T. Peschel, U. Peschel, and F. Lederer, Phys. Rev. E57, 1127
s1998d.

f27g A. Kobyakov, S. Darmanyan, T. Pertsch, and F. Lederer, J.
Opt. Soc. Am. B16, 1737s1999d.

f28g B. A. Malomed, P. G. Kevrekidis, D. J. Frantzeskakis, H. E.
Nistazakis, and A. N. Yannacopoulos, Phys. Rev. E65,
056606s2002d.

f29g Z. Y. Xu, Y. V. Kartashov, L.-C. Crasovan, D. Mihalache, and
L. Torner, Phys. Rev. E70, 066618s2004d.

f30g R. Iwanow, R. Schiek, G. I. Stegeman, T. Pertsch, F. Lederer,
Y. Min, and W. Sohler, Phys. Rev. Lett.93, 113902s2004d.

f31g Y. V. Kartashov, L. Torner, and V. A. Vysloukh, Opt. Lett.29,
1117 s2004d; Y. V. Kartashov, V. A. Vysloukh, and L. Torner,
ibid. 29, 1399s2004d.

f32g S. Carrasco, L. Torner, J. P. Torres, D. Artigas, E. Lopez-Lago,
V. Couderc, and A. Barthelemy, IEEE J. Quantum Electron.8,
497 s2002d.

f33g M. Soljačić, S. Sears, and M. Segev, Phys. Rev. Lett.81, 4851
s1998d; M. Soljačić and M. Segev, Phys. Rev. E62, 2810
s2000d; Phys. Rev. Lett.86, 420 s2001d.

f34g A. S. Desyatnikov and Yu. S. Kivshar, Phys. Rev. Lett.87,
033901s2001d; 88, 053901s2002d.

f35g Y. V. Kartashov, G. Molina-Terriza, and L. Torner, J. Opt. Soc.
Am. B 19, 2682s2002d; Y. V. Kartashov, L.-C. Crasovan, D.
Mihalache, and L. Torner, Phys. Rev. Lett.89, 273902s2002d;
L.-C. Crasovan, Y. V. Kartashov, D. Mihalache, L. Torner, Y.
S. Kivshar, and V. M. Perez-Garcia, Phys. Rev. E67, 046610
s2003d; D. Mihalache, D. Mazilu, L.-C. Crasovan, B. A. Mal-
omed, F. Lederer, and L. Torner,ibid. 68, 046612s2003d; J.
Opt. B: Quantum Semiclassical Opt.6, S333s2004d.

f36g L. Torner, J. P. Torres, D. V. Petrov, and J. M. Soto-Crespo,
Opt. Quantum Electron.30, 809 s1998d; S. Minardi, G.
Molina-Terriza, P. Di Trapani, J. P. Torres, and L. Torner, Opt.
Lett. 26, 1004s2001d.

XU et al. PHYSICAL REVIEW E 71, 016616s2005d

016616-6


