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Multicolor vortex solitons in two-dimensional photonic lattices
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We report on the existence and stability of multicolor lattice vortex solitons constituted by coupled funda-
mental frequency and second-harmonic waves in optical lattices in quadratic nonlinear media. It is shown that
the solitons are stable almost in the entire domain of their existence, and that the instability domain decreases
with the increase of the lattice depth. We also show the generation of the solitons, and the feasibility of the
concept oflattice soliton algebra
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Localized structures, especially solitons, play a crucial Besides the study of the existence and stability properties
role in many branches of nonlinear science. Over the pasif fundamentalground statemodes in the nonlinear media
several decades, the existence and unique properties of spaith periodic potentials an intriguing question is whether the
tial, temporal, and spatiotemporal optical solitons in homo-action of the confining potential can permit the formation of
geneous cubic and quadratic nonlinear media have beerorticity carrying localized structures. Theoretical works
studied both theoretically and experimentalfgpr detailed showed that such complex localized structures, ladtice
reviews, see Refd.1-3]). Solitons arise as a result of the vortex solitonsexist when an optical lattice acts on a Kerr or
balance between linear diffracting and/or dispersing properphotorefractive nonlinear crystfl9-21]. Recently, theoret-
ties of the medium and a nonlinear mechanism responsiblieal expectations were indeed confirmed experimentally by
for focusing/defocusing. One important subject of study istwo independent groug®2,23. During the last years vari-
the generation of nonlinear modes with a nontrivial phasepus families of solitons in arrays of weakly coupled
such as vortices. In optics, vortices are associated with screwaveguides made with quadratic nonlinear media have been
phase dislocations nested in light beapd$ Here we are investigated[24-29 and observed30]. One-dimensional
interested in vortices with a bright shape, i.e., dislocationg§1D) multicolor solitons in lattices with tunable strength
nested in finite-size beani$]. In homogeneous pure cubic have been also studied recently, and their potential applica-
and quadratic uniform media such ring-shaped vortex solitions for packing and steering single solitons have been in-
tons suffer azimuthal instabilities which have been observegestigated 31]. Two-dimensional geometries might support

experimentally in different settings]. They can be made even robust soliton ensembles with phase dislocations, the
stable in media with competing nonlineariti€s], and in  problem that we address in this work.

media with refractive index modulations that we address We thus report on the existence and stability of such mul-

here. . . o N ticolor lattice vortex solitons, which comprise four main
Propagation of optical radiation in media with transversehumps arranged in a square configuration. It is shown that

bility of their dynamical generatiof82] from Gaussian-type
input beams with nested vorticities.

We study the system of coupled nonlinear equations that
scribe the interaction between the fundamental frequency

attracting a growing interest, in part because of their poten
tial for all-optical switching and routing phenomef&-11].
The intermediate regime between continuous and discret&e

solitons[12,13, constituted by continuous nonlinear media(FF) and second-harmoniSH) waves under conditions for
with an imprinted transverse modulation of the refractivetype_I second-harmonic generation in bulk materials in the
index, has been shown recently to offer a variety of NeW,hsence of Poynting vector walkoff:
opportunities. The concept behind this regime might be
termedtunable discretenessvith the strength of modulation .90y _ ﬁ(ﬂ ﬂ
being the parameter that tunes the system properties fromgg = 2 ot 9L
predominantly continuous to predominantly discrete. In this

context, wave dynamics is governed by the interplay be-gq, d,(#q, q,
tween optical tunnelling to adjacent sites and nonlinearity!a_g :E 5_7]2“L a_gz
This kind of lattice solitons has been observed recently in
two-dimensional (2D) photorefractive optical lattices where  q;=(2k,/ko) Y27 wiyPr2/c?1A, and  Qp

[14-18. =[27wix'Pré/c?]A, represent the normalized complex am-

) — 0,0 exp(— i 88) — pR(7, )y,

) - gZexplifé) - 2pR(7,0%, (1)
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plitudes of the FF and SH fieldsk;=k(wg), ky=k(2wq)
~2kq, 1y is the transverse scale of the input beams,
=xIrg, (=ylrg, €=2/(krd), B=(2k—kpkrs is the
phase mismatch,d;=-1, d,=-k;/k,~-1/2, and p
=27w3ox'Vr3/c? is the lattice depth. The functioR(7,?)
=coq2m7y/T)cog2w{/T) describes the transverse refractive
index profile, whereT is the modulation period. The system
(1) admits several conserved quantities, including the energy
flow

=fj (|aaf*+ |alAdnde, 2

and the Hamiltonian

[ g d 1 ., _
:f f_x [‘51|VQ1|2_22|VQ2|2‘5(Q1)ZQ2 exp(—iBé)
-3
1,. B, ) @ n ©) "
~ 5010 explige) + E|Q2| = PR(%,0)ay|

FIG. 1. (a) Profile and(b) phase of vortex solitons supported by
— 2 the harmonic lattice ab;=1.07.(c) Profile and(d) phase of vortex
] d d [} 3 1
PR §)|q2| ] e & soliton atb;=2. Only the FF wave is shown. Lattice deptk4,

. h i tcjg=0.
where V=e,(d/dn)+e/dl ), ande,, e, are unity vectors phase mismatcis

along » and{ axes. tion with a stairlike phase structure that is topologically

We searched for the stationary solutions in the faym equivalent to the phase of a conventional vortex in uniform
=[uy(7,0) +ivi(n,)]explib, ) and ®=[Ux(7,{)  medium[see Figs. () and Xd)]. The positions of the soli-
+ivy(7, O ]explibyé), whereuy (7,¢) andvy (7,{) are real  ton intensity maxima almost coincide with the positions of
functions, andb, , are real propagation constants that verify the local maxima of the lattice. Note that the singularity of
b,=B+2b,. Substitution of the above expressions into Eq.these vortex solitons is centered between four lattice sites,
(1) yields the following system of equations for the soliton that is they belong to the class of the, so calletf;site

profilesu; , andv, vortex soliton. In the model we investigated here there exist
2 also a family ofon-sitevortex solitons(not shown herg In
dl( U , 9 uzl) — Uyl — 0105+ bty — pR(77,0u; = 0, that case the phase singularity is centered on a lattice site
2\ o (7§ [20,22,23. We will restrict ourselves here to the case of the

off-site vortex solitons. It is interesting to note that these
d1 5201 &Zvl stationary structures somehow resembles the four-soliton
5772 (9§2 ~ Uz +v3Up + by — pR(7, v, =0 molecules carrying orbital angular momentum that were in-
vestigated in a variety of nonlinear media in both two-
dimensional and three-dimensional geometf&%-35. The
) — W2+ 03+ byu, - 2pR(7,Hu, =0, typical stairlike phase distribution in the case of the above
mentioned soliton molecules is clearly seen in pafi@lsnd
(d) of Fig. 1 for the lattice vortex solitons. We want to men-
d, azuz &sz tion that the 1D quadratic waveguides were also shown to
P (9772 agz ~ 2u301 + bovy = 2pR(7, v, = 0. (4) support various families of multipeaked solitons, which dis-
play combinations of in-phase and out-of-phase odd solitons,
We solved the system of coupled equatigds numeri-  the latter ones withr phase jumps between neighbor solitons
cally by using a standard relaxation method. The lattice vor{31].
tex soliton families are one-parameter families defined by the |t should be noted that at low powe(smallb,) the lattice
propagation constaty; for any given period of the modula- vortex solitons are quite wide and spread out over many
tion T, lattice depthp, and phase mismatctB. Since |attice sites[Fig. 1(a)], while at high powers the energy is
one can use scaling transformations X(7,{,€,8,p)  mainly localized within the corresponding four pedl&g.
— X0y (X7, x$, X*€,x*B. x*p) to obtain various families of  1(c)]. We did not find four-hump structures with higher to-
solitons from a given family, we have selected the transverspological chargegtwo or more, and all other higher-order
scalery such that the modulation period is given By stationary structures we have fou(fdr example, lattice vor-
=/2 and then we have varida, 8, andp. tex solitons with eight humpswvere found to be unstable on
The simplest vortex soliton with unit topological charge propagation. Thus in this work we will restrict ourselves to
in two-dimensional periodic lattice is shown in Fig. 1. It the study of the properties of simplest four-hump lattice vor-
comprises four main humps arranged in a square configuraex solitons.
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FIG. 2. (a) Vortex soliton energy flow versus propagation con-
stant for different values of phase mismatclpa. (b) Propagation
constant cutoff versus lattice depth&t0. (c) Cutoff versus phase
mismatch ap=8. (d) Stability and instability domains for different
lattice depths apB=0. Circles show critical value of propagation
constant for stabilization.

In order to characterize the families of lattice vortex soli-
tons we have calculated the energy flows associated with FIG. 3. Propagation of vortex solitons with =3.1(a), 3.4 (b),
these stationary solutions as well as their existence domairgnd 5(c) in the presence of input noise with varianeg,,=0.01.
for given lattice depttp and phase mismatgh. As a general FF wave profile is shown at different propagation distances. Lattice
rule, the energy flow of the four-hump lattice vortex solitonsdepthp=8, phase mismatcB=0.
is a nonmonotonic function of the propagation constant
[even if this cannot be seen directly from FigdRwithout e have performed extensive numerical simulations of
zooming. Note tha}t in Figs. @) and 2d) on the abscissa W€ the evolution dictated by Eq.(1) with the input
have plotted the differend#, —b.,) between the propagation ~q5nditions Qu(E=0)=[uy(9, O +ivy(7, O 1 +py(n,0)] and
constanb, and cut_off valud,,, Thg cutoff value depends on Ga(£=0)=[Ux(7, ) +iva(7,O)][1+px(7,0)], Where u, , and
both the phase mismatghand lattice deptip. For example ;. , are the exact solutions of E¢4) and p, , are random
at p=8 cutoff is given byb,=6.065 for =-6, while b;,  functions with Gaussian distribution and variane@,..
=1.23 forp=6. The cutoffb., is @ nonmonotonic function of =0.01. We have propagated the perturbed four-hump lattice
the lattice deptip [Fig. 2(b)]. It tends to infinity ap—0 and  vortex solitons over thousands of units for various values of
p— +. One can see from Fig.(@ that in the presence of the physical parameters involvég,p,U).
the lattice the dependendg,(B) differs from that for qua- Our simulations show that there exists a narrow instability
dratic solitons in continuous medié(8)=maxX-p/2,0;.  pand near the propagation constant cubfffor vortex soli-
Thus at — - cutoff is approximately given by(8  tons, but above a certain critical value of propagation con-
-Bo)/2, while at 3— +o0 one hasb.,=by, whereg, is the  stant they appear to become free of instability. We have
mismatch shift due to the lattice. Boltly and 8, growth with  found that the width of instability domain of lattice vortex
p. This property holds also for the one-dimensional latticesolitons decreases with increase of the depth of the Igftice
solitons in quadratic nonlinear medial]. [Fig. 2(d)]. For example, as depicted in Figid2, the width

The periodic refractive index modulation affects also theof instability domain on propagation constant for12 is
energy sharing between FF and SH waves. For example, atagpproximately given by 0.24, while fgp=8 it is 0.35.
given phase mismatch, the fraction of the total energy flow A few representative decay scenarios for the unstable
carried by the SH wave increases with increase of the latticbour-hump lattice vortex solitons with unit topological charge
depth. Moreover, near the cutoff, the SH wave spreads oveare shown in Fig. 3. In the roMa) of Fig. 3 we show the
more lattice sites than the FF beam. As in the case of &pical decay of the unstable vortex soliton in the vicinity of
uniform media, in the lattice with fixed depinthe part of the cutoff on propagation constanyg, The initial energy of
energy flow carried by the SH wave decreases with increasgne localized structure is spreading out during evolution
of phase mismatcis. across the whole lattice and the vortex soliton disappears.

To investigate the stability of the lattice vortex solitons,
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FIG. 4. Snapshot images showing decay of the stable vortex
solitons caused by removal of the lattice. Only SH wave profile is
shown. Images are taken after each 2.5 propagation units. Lattice _, 0
depthp=8, phase mismatc3=0.

Notice that this type of instability develops exponentially. In
the rest part of the instability domain located closer to criti- 3
cal value of the propagation constant, we encountered () -3 0 3 (d) -3 0
oscillatory-type instability. Upon development of this insta-
bility vortex soliton transforms into a fundament@round
statg lattice soliton that is the most robust and energetically
stable state of the systefsee row(b) of Fig. 3], through
increasing oscillations of four intensity maxima of the .,
vortex.

One of the important results of this study is that the lattice
vortex soliton becomes completely stable when its propaga-

w

3

tion constant exceeds a critical valbg, i.e., almost in the 3
entire existence domairsee Fig. 2d)]. In row (c) of Fig. 3 -3 0 3 -3 0 3
we have plotted, for the sake of illustration, the initial and (e) n ® n

the final (after 500 propagation unitsntensity distributions ) ] o
of a stable lattice vortex soliton. Comparing to the soliton FIG. 6. Soliton algebra. The output soliton distribution depends

molecules investigated in bulk nonlinear media, which were®” the topological chargesy, of FF wave andm, of SH wave,
respectively. In all casesn;=1. In (a)—(d), the amplitude of FF

wave A=20 and the amplitude of SH wa&=2. In (e) and (f) A
=20 andB=0.5. Plots(a)—(f) correspond the topological charges
m,=1,3,4,6,7,8respectively, and show the output SH field dis-
tribution at£=100. Lattice deptlp=8, phase mismatci=0.

shown to bemetastablephysical objects under suitable con-
ditions, we conclude that, as expected on physical grounds,
the effect of the two-dimensional lattice is to arrest the rota-
tion of the soliton molecule and thus to assure the complete
stabilization of the soliton complex. Since lattice causes
strong azimuthal modulation of the vortex soliton, lattice re-
moval results in complete soliton decay into four filaments,
as shown in Fig. 4. Escape angles of filaments decrease with
increase of input energy flow of vortex soliton.

To understand lattice vortex solitons generation from a
radially symmetric input beam carrying a screw phase dislo-
cation nested in the center and to show that different sets of
output solitons can be obtained with different combinations
of topological charges and shapes of the input beams we
performed a comprehensive set of simulations of Eq.
with the input conditions corresponding to Gaussian beams
with a phase dislocation nested in the center:

(c) i (d) n

FIG. 5. Generation of the vortex solitons with only FF inpa.
Field and(b) phase distributions of the input FF beam with topo-
logical chargem;=1. (c) FF beam andd) SH beam ag=15. Lat- imy| ) )
tice depthp=8, phase mismatcf=0. Qu(£=0.r,¢) = Ar™ explimyp)exp(~ r?/ws),
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qz(gzo,r,(p)zgr\mz\ exp(im,e)exp(- r2/vv§), (5) presence of lattices, offering interesting opportunities for
controlling the soliton dynamics.

In summary, we have shown that periodic lattices im-
printed in quadratic nonlinear media can support four-hump
: . vortex solitons with unit topological charge that are stable
beam widths. Below we set the widthg=w,=1 and sup-  ,vided that their propagaqtiongconstantgils above a certain
pose that topological charge of FF wave is giveniy=1.  (yiica| value. Below this critical value we have identified

First, we consider nonseeded vortex soliton generation gfyq types of instabilities(i) an exponential type of instabil-
B=0. At low input powers both input FF wave and generatedyy |eading to the final decay and spread out of the solitons
SH wave exhibit complete diffraction, and input beam en-5¢rqss the lattice, ar(@) an oscillatory-type instability lead-
ergy is redistributed between many lattice sites. With theng 1o the transformation of the lattice vortex soliton into a
increase of input energy flo.e., by increasingA in Eqs.  fyndamental soliton without internal vorticity. We investi-
(5)] the generation of lattice vortex soliton with unit topo- yateq the generation of the multicolor lattice vortex soliton
logical charge becomes possible as shown in Fig. 5. Latticgom Gaussian beams with nested phase dislocations. The
soliton generation is accompanied with energy radiation,,ssibility to generate different output lattice soliton pat-
[Figs. §c) and §d)] but the ratio between radiative 10Sses tgrms with and without vorticity, by varying the topological
and the output soliton energy flow decreases with increase ‘tharges and amplitudes of the input beams in seeded excita-

input energy flow. tion configurations, has been discussed. The generation of a
In the case of seeded SH generatiBr+0 andB<A), the  5p periodic potential in quadratic nonlinear media is a chal-

output field distribution can be controlled by t_he input t0PO-|enging issue, even though fabrication of 1D lattices has
logical charge of SH wave. Fan, =1 vortex soliton genera- peen already achieved using techniques which might be ex-
tion is possible only for the vorticity-matched case whenienged to 2D geometries. Also, the results presented here

m,=2, while all other values ofn, correspond to formation  might be relevant to suitable atomic-molecular Bose-Einstein
of trivial-phase soliton distributions, whose structure is dic--gndensates held in optical lattices.

tated by lattice symmetry and energy exchange between FF

and SH waves at the initial stage of propagation. Some rep- This work was partially supported by the Generalitat de
resentative output distributions are shown in Fig. 6. Thes&€atalunya, by the Institucid6 Catalana de Recerca i Estudis
plots show that the concept of “soliton algebra,” previouslyAvancats(ICREA), and by the Spanish Government through
explored in homogeneous medi6], does also apply in the Grant No. BFM2002-2861.

wherer =(7%+ %2 is the radiusg is the azimuthal angled
and B are amplitudes of FF and SH waves, andw, are
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